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Abstract—The granular material perceived as a collection of particles is modelled as a micropolar
continua taking account of particle interaction and microstructure of the material. Explicit
expressions of constitutive constants in terms of elastic inter-particle stiffness are derived for granular
solids with isotropic random fabric distribution. Based on the derived expressions for isotropic
material. six matertal constants are identified instead of two constants used in conventional elasticity.
The derived constitutive constants in explicit terms of inter-particle contact properties provide a
fundamental understanding of these constants and furnish useful inter-relations among these con-
stants. The physical meaning of these material constants is discussed with emphasis on the role of
particle spin. Finite element analysis incorporating these material constants is described and used
to obtain solutions for boundary value problems. Examples are given for grunular solids under
boundary pressure to show the effects of inter-particle properties and material constants on the
behavior of stress distribution and deformation in granular material.

L INTRODUCTION

In carlier attempts, we have represented discrete granular material as equivalent continua
by treating particle translation and particle rotation as two continuum ficlds (Chang, 1989 ;
Chang and Liao, 1990) and subsequently derived counstitutive relations considering the
effect of particle interactions and microstructural propertics (Chang and Ma, 1991). The
derivation leads to a constitutive refationship which resembles micropolar type (Toupin,
1964 ; Green, 1965 Eringen, 1968). The micromechanical based approach is novel in that
the derived constitutive constants are explicitly in terms of inter-particle properties.

In this paper we aim to derive close-form expressions for the macroscopic constitutive
constant in terms of microstructural propertics. Close-form expressions are desirable
because they provide a better understanding of the influence of inter-particle properties on
the stress-strain relationship. However, close-form expressions can only be obtained for
simplified conditions since it involves complicated mathematical operations. Thus in this
paper we deal with a rundom packing of cqual-sized spheres with isotropic fabric dis-
tribution and linear elustic contact interaction between particles.

Expressions of constitutive constants thus derived consist of six material constants for
isotropic granular solids. Of the six constants, two are identical to the Lamé constants of
the elasticity. The other four represent additional material constants for granular material,
The physical meaning of these constants will be evaluated to gain some insight into the
mechanism of particle spin and to assess the influence of inter-particle propertics.

To show the effects of these material constants and the inter-particle properties on the
deformation bchavior of granular solids in general boundury value problems, a finite
element formulation is then described which incorporates the six constitutive constants.
Using the finite clement method, the behavior of deformation and stress distribution is
discussed for granular solids under boundary pressure.

2. MODELLING OF GRANULAR MATERIAL AS EQUIVALENT CONTINUUM

2.1 Mechanics of interactions between particles
A simple conceptual model for granular material is to treat it as a collection of particles
which are connected at contact points by imaginary springs (Duffy and Mindlin, 1957;

ot
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Walton. 1987). The spring in general is elasto-plastic. The elastic portion of the spring
deformation is contributed by particle distortion while the plastic portion is contributed by
the sliding between particles. For simplicity, in this paper, we confine our discussion to the
clastic case only.

To represent the contact resistance, two types of springs are used. namely. the rotation
springs and the stretch springs. The rotation springs. transmitting contact moments, rep-
resent the rolling and torsional resistance at inter-particle contacts. The stretch springs,
transmitting contact forces. represent the compression and sliding resistance at inter-particle
contacts.

The interaction between the nth particle and its surrounding particles is shown
schematically in Fig. 1. When the assembly is subjected to an increment of load. particles
undergo translations «, and rotations w,, resulting in the stretch of springs at contacts. For
example. at the cth contact of the nth particle as shown in Fig. L. the angular rotation. 8",
and the stretch, 8", of the spring are caused by the movement of the particle "¢ relative
to the particle "n™", given by

0" = w —wf (N

Il

0" = (uf —ul )+ E (W r" — o' r (2)
where r{ and r{" are vectors joining the centroids of particles “a™ and “'¢” respectively to
the contact point between the two particles as shown in Fig. 1. The quantity
S = Hi—)(i—Kk)(k—i) is the permutation of symbols uscd in tensor representation for
the cross product of vectors.

Due to the stretch and rotation of the springs at a contact, corresponding moment,
dm¢, and force, df7, are developed, given by

dmy = g5, do; (3)
dfy = ki doy (4

where ¢ is the stiffness of the rotation springs and A} is the stiffness of the stretch springs.
If the stifTness tensors ¢, and &}, are decoupled, they take the form,

Fig. |. Schematic figure for particle interaction.
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g5 = Gan I+ gi S + gl Y (5)
ki = kanim +kisis +hit ©

where g¢ and k%, g¢ and k. and g{ and k7 are the stiffness constants in the directions of the
local coordinates n. s and ¢ respectively. The local coordinate system is constructed for each
contact with three orthogonal base unit vectors: the vector is normal and the vectors s and
t are tangential to the contact area.

2.2, Strain and stress in a granular solid

In the macrocontinuum fields. in the neighborhood of the nth particle (i.e. the cluster
shown in Fig. 1), we assume the usual “affine” (or homogeneous) deformation (Eringen,
1968). In Fig. 1, the nth particle is associated with four kinematic variables: u and f as
the displacement and rotation, and «]; and f; as the derivatives of the displacement and
the rotation, respectively.

For convenience, we introduce the asymmetric deformation strain g, and the polar
strain y; in terms of variables related to particle displacement and rotation (Chang and
Liao, 1990)

5;:' =u}; —Ej:’k Wi €)

Y

7= Wi, ®

With the afline deformation assumption, the angular rotation, 07, and the stretch, 87,
of the springs at the contact between particle *n™ and particle *¢” [eqns (1) and (2)] can be
expressed by the strains defined for the particle [eqns (5) and (6)], as follows :

0 = yple 9
O = e+ E vyl rie (10

where the branch vector [ = /" —r*.

Corresponding to the strain defined in eqns (7) and (8), the stresses in the granular
assembly can be defined using the principle of energy equivalence by equating the work
done due to the deformation of contact springs and the work done in terms of stress and
strain (Chang and Ma, 1991). Thus we obtain the Cauchy stress tensor o) in terms of
contact forces as

l
n _ ne £nc
O‘A/'—?v,, Zli‘ J (ll)
2" 5
and the couple stress tensor gy, in terms of contact forces and moments as

1
Wi =35 LEAME + B f7) (12)

where v” is the volume of the microcell which includes the solid volume of the nth particle
and its associated voids.

Next, we envision a representative volume of granular material which is sufficiently
small when compared with the scale of the boundary value problem, yet consisting of a
sufficiently large number of particles to be statistically representative of the behavior of the
material.

The stress for such a representative volume can be defined based on the volume average
of stresses at particle level as

SAS 29:8-F
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N

1 2 1
ome — ANy = e £nc
oy VUZ_ILG’,} 2V§ > I f, (13)

a=1 ¢

where the volume of the assembly

N
V=Y v

LERt

In the double summation of eqn (12), each contact is counted twice. Note that the
vector [ = [[= —Il" and ff = f7“ = —f". The stress can be further expressed by the
summation over all particle contacts in the representative volume. Thus

l M
°:/=,—/Zlf/f (14)

M
where M is the total number of contacts and Z denotes a summation over all contacts.

e
Similarly, let the vector ([ = r{"+r and note that {f =™ =" and m{ = m/ = —m",
the average couple stress

l d C o C | ud = v
w; = *‘;Zli '"1+§“l} ZC:-;k/Ck/w (15

It is noted that, for packings with cqual size spheres, {f is zcro and the couple stress in eqn
(15) is contributed solely through the moments at contacts.

2.3. Constitutive law of granular medium

Let &, and y,, be the strains defined for the representative volume. Observed from the
results of computer simulation, the assumption of uniform strain secems reasonable for
packings of equal sized particles with the linear elastic contact property (Chang and Misra,
1990). With the assumption of uniform strain in the representative volume, the stress—strain
relationship for the representative volume can be derived based on eqns (14), (15), (3), (4).

(9) and (10) as
{‘7,/} - I:“:,u b,,kl] {Eu} (16)
Hyj blm, Cijet 1 ua

where a4, b, and ¢, are the constitutive coefficients for the representative volume, given
by

M

Ay = v Z[f Kenlg (17)
l M

btjkl = 7 Zslmnlf KC"I;'{'I (18)
l M

Com =3 YNG4 Zn iy Ko § 14 (19)

where M is the total number of contacts in the representative volume.
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3. CONSTITUTIVE CONSTANTS FOR ISOTROPIC RANDOM PACKINGS

Since the representative volume consists of a large number of particles, the constitutive
constants [eqns (17)-(19)] can be expressed in integral form by introducing a density
function. For packings of equal size spheres with isotropic directional distribution of inter-
particle contacts, the density function in a spherical coordinate (Fig. 2) is 1/4n and it satisfies

.1 n l )
JJ; E{smyd*/dﬂ=l. 20)

0

Let M be the total number of contacts in the volume ¥, the number of contacts in the
interval from y to y+dy and 8 to f+df is given by M(1/4n) sin y dy dB. A summation of
any function F¥(y. ) over all contacts can thus be expressed in an integral form as follows:

Y Fe(.f) = - f f F(. )M sin y d7 df. @1
c=1 drn Jo Jo

For the packing of equal spheres of radius r, the branch vector [ = 2rn{, where the
unit contact normal vector n{ is a function of y and f. Replacing the form of summation
in eqns (17)-(19) by integral form, we obtain

’..‘.N fn 2 . )

aukl = ey A:;kl(“/" ﬂ)M sin ‘y d“/’ dﬂ (22)
nV Ju Jo
I"N fr ("2n

U Bl (y. MM siny dy df (23)
nV Jo Ju
r!N fr 2 . ]

culzl = CI’/I(I(Y* /;)M sin ? d? dﬂ (24)
nV Ju Jo

where

AL B = ni (7, YK (v, B) (25)

B;}kl(yv /}) = Elmnn;‘(yv ﬁ)K/nn; (},i [})nfn (‘sv' ﬂ) (26)

Cou(7. B) = i (7, PYGnic (7, B). (27)

By observing eqns (25) and (27), we can identify the following properties :

Fig. 2. Spherical coordinate for directional distribution of inter-particle contact.
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(28)

At = Qeyi; Coykt = Cruij+

It is also noted that, for assembly with centro-symmetric packing, b4 = by, = 0. Since
granular material is statistically centro-symmetric, the stress-strain relationship given in

eqn (16) decouples and yields to the following form:

Gy = QijgCer

R = CiiwiFii-

3.1, Stretch stress—strain relationship
Close-form expressions of the stiffness constants a,,, for a random assembly of equal

spheres with isotropic packing structure are obtained from eqn (22) assuming k, = &,. After
mathematical operation, the constitutive constants can be expressed in the following form:

i = A0, 0+ (G +2)046,+ (G —2)0:0, . 3D

Or expressed in a matrix form as follows:
(o] [2+26 i A 0 0 0 0 0 0 e

Ty y] A+2G A 0 0 0 0 0 ||e,

6. i i A+2G 0 0 0 0 0 0 |e..

O 0 0 0 G+z G-z O 0 0 0 s,

Oy 0 0 0 G-z G4z O 0 0 0 e,

g: =] 0 0 0 0 0 G+z G-z 0 0 e, G

Tz 0 0 0 0 0 G-z G+z O 0 e,

Oy 0 0 0 0 0 0 0 G+z G-zt

7. L 0 0 0 0 0 0 0 G—:z G+: | Ex

Equation (32) represents a material symmetry of isotropy where the three macro-material
constants for a representative volume are expressed by micro-material constants k, and &,

as follows:
G = 2a(2k,+ 3k,) (33)
A= dalk,—k,) (34)
= = 10ak, (35)
where
N Ly (36)
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The value of x relates to both particle size and the number of contacts per volume M/V
which is a function of void ratio, coordination number and particle size (Chang et al.,
1989). It is interesting to note that when &, < &,, 4 becomes negative, leading to the behavior
of a material with negative Poisson ratio. The material constant z in eqn (36) is not an
independent constant. Observed from eqns (33)-(35), the constant

z=G-A 37

The strain and stress in general are asymmetric. The strain defined previously in eqn
(7) is divided into two components : the symmetric part and the skew-symmetric part. The
symmetric part,

Euj) = é(sij+8_/i) = %(uj.i'*'“i\j) (38)

represents the stretch strain.
The skew-symmetric part of the strain

£ = %(51‘/ "'Eji) = %(uj.i - “u) "E-‘jkwk (39)

contains two terms : the skew-symmetric tensor Z,,w, representing the average rotation of
particles in the representative volume and the skew-symmetric tensor §(u,, — ;) representing
rigid body rotation of the representative volume. The angular rotation ¢, corresponding
to the rigid body rotation is

Eljk Ui = Uyyy- (40)

Substituting this equation into eqn (39), the skew-symmetric tensor

5[411-2,,,(%"60:;) 4n

represents the value of the net average particle spin (i.e. the difference between particle
rotation and the rigid body rotation of the assembly).
Similarly, we define the symmetric stress

aup = oy +0y) (42)

to represent the stretch and define the skew-symmetric stress

Oy = 5(0,} -a;) 43)

to represent the momentum due to shear in the material.

Note that g;; = —g, and &g, = ¢, eqn (32) can be rearranged and expressed in a
matrix form as follows:
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(6w [i+26 i i 0 0 010 0 O]
o, A 426G i 0 0 0/0 0 0=,
0. p i i+2G 0 0 0]0 0 0 e
iy 0 0 0 G 0 0{0 0 0lEwm
5z 0 0 0 0O G 010 0 0ilew
Geo|=] 0 0 0 0 0 G|0 0 0y (44)
Gpes 0 0 0 0 0 0z 0 0|,
UD‘-‘? 0 0 0 0 0 00 - 0 o
O 0 0 0 0 0 00 0 =g,

When the skew parts of stress and strain are neglected. the relationship between stress and
strain [eqn (44)] reduces to a form identical to that in conventional theory of elasticity. The
values of 4 and G are thus the usual Lamé constants. Corresponding to the Lamé constants,
the values of macro-material constants Young's modulus £ and Poisson’s ratio v can be
obtained in terms of the micro-material constants &, and &,, given by

. 200k, (2K, +3k,) 4

T Tak vk )
k,—k,

v= - - (46)
4k, +k,

For a possible range of &, from 0 to infinity, the admissiblc range of Poisson’s ratio is

thus —1-0.25.
On the other hand, using eqns (44) and (45), the micro-material constants &, und &,

can be expressed in terms of the macro-material constants £ and v as follows

ko= E (47
20x(t —2v)

E(1 —4v) )
2001 +v)(1 = 2v)" '

k, =

These relationships are useful for back calculating the micro-material constants from the
laboratory measurements of macro-behavior of material sumples.

The skew part of strain in the present formulation is introduced by a mechanism of
particle spin which is not considered in the conventional theory of elasticity. Non-sym-
metrical shear stress for the representative volume results from the spin of particles which
activates shear forces transmitting through particle contacts. Therefore, - in eqn (44),
termed as a “‘spin modulus™, is directly related to tangential contact stiffness &, as shown
in eqn (35). The spin modulus can also be expressed in terms of Young's modulus uand

Poisson’s ratio, given by

(1 —4vn)E (49)

T30+ v( 2w

Equation (49) shows that v must be less than 0.25 in order to keep = positive for
isotropic packing. This is in agreement with the admissible range of v previously described
in eqn (46). Thus the phenomenon of v > 0.25 is attributed to the anisotropy of samples.

When the couple stress is absent, g;; is symmetric (i.e. oy, = 0) which leads to the skew
part of strain gy, = 0 according to eqn (44). Thus no spin is expected for isotropic granular

material under symmetric stress conditions.
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3.2. Couple stress—strain relationship
Next we discuss the constitutive constants ¢, in eqn (30) between couple stress and

rotation gradient. Similar to the derivation of a;, this matrix also has the form of isotropic
symmetry, given by

el (4426, A, A, 0 0 0 0 0 0]
™ i A+2G, A, 0 0 0 0 0 0
e i A A¥+2G 0 0 0 0 ] 0
By 0 0 0 G.+z G-z 0O 0 0 0
My 0 0 0 G-z, G4z, 0 0 0 0
m =l 0 0 0 0 0 G+z G-z 0 0
ey 0 0 0 0 0 G+z G-z O 0
He 0 0 0 0 0 0 0 G, +z. G,—z
Her 0 0 0 0 ] 0 0 G+z G-z
o EM
Py
Vi
Ve
re
Xy, (50
}':.,.
?x:
y:,\'
where
G, = 22(29,+3g,) )
4, = 4a(g,—g.) (52)
z, = 10uag, (53)

where 2 = Mr¥/30V.

According to egqn (50), when the rolling stiffness g, and twisting stiffness g, at inter-
particle contacts are zero, no couple stress is permitted to transmit. Although values of g,
and g, are negligible for a contact between two smooth spheres, the values can be con-
siderably larger for spheres bonded at contacts by an agent such as cement. Therefore eqn
(50} is more pertinent to bonded granular material.

Since the matrix form of ¢, in eqn (50) resembles the form of q,,, relating Cauchy
stress and stretch strain, in analogy to the Young's modulus E and Poisson’s ratio v, two
material constants E, and v, can be similarly introduced for the relationships of couple
stress and rotation gradient. Under the applied stress p,, while y,, = ., = 0, the constants
Eqand vg are defined as follows:

Ep =12, | (54)
‘y—‘X
vy = 1%, (55
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E, represents the twisting resistance of a representative volume. v, is the ratio of rotation
gradients in the directions of two Cartesian axes.
Parallel to eqns (45) and (46), it yields the following representations:

2029,9.(39,+2g,)
Eq= 5
) 49, +9, (56
gn_yt -
Vg = ——. 57
R d4g,+4, >N

It is noted that, f the twisting stitfness constant g, of the contact is zero. no couple
stress can be transmitted through the motion of twisting between two spheres and 1t can be
seen from eqn (56) that the torsional resistance of the representative volume £z = 0.

The contact shear forces due to a rotation gradient y,, for particles rotating tn the
direction of the x-axis can transmit through rotational springs and cause twist motion of
particles along the y and z-axes. This effect is reflected by the variable vg. For g, = 0. the
value of vg = — 1.

It is certain that due to rotation gradients of particles in the representative volume, the
ability to transmit couple stress lics in the inter-particle properties g,,. ¢,.

3.3. Two-dimensional condition
Reducing to a two-dimensional condition, the system contains the following com-
ponents of displacement and rotation:
w=(u.u. 0) and w=(0,0,w.).
For a plane strain condition, the following stratns can be presumed to have vanished :
c.=0 and e.=¢,.=¢.=¢,=0,

23 !

T =70 =V T 0 and To TV Tl =74 = 0.

0. = 0 and O =0:=0,.=0;= 0~
Hee = Hoo = Hyy = 0 and Hop = oo = Ryo = oy = 0.

For example, the stress-strain relationship of the material for the plane strain condition
is reduced to the following form:

’aﬂ (i+2G i 0 0 0 07 (&u)
g, p) A+2G 0 0 0 0 €,
O 0 0 G+z G—-- 0 0 £y
o}.:v = 0 0 G-z G+ 0 O £y (58)
T 0 0 0 0 M, 0 Ve
L Hy: L 0 0 0 0 0 M J U

where M, = G, +:z, = 4a(g,+4q,).

4. FINITE ELEMENT FORMULATION

For two-dimensional plane strain conditions, the strain—displacement relation can be
expressed in matrix form as follows:
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{e} = [€1{u} (39)
where
(€} = (Bxx»Eyy» Exvs Eyer Vs ) {8} = (U, 14, 0)T
and
(6. 0 0]
0 o4 0
0 o4, -1
J, 0 1 60
0 O X
L y |

In an element which consists of several nodal points, the displacements of nodal points
can be expressed by a nodal displacement vector {u*}. The displacement field of the element
can be constructed using a shape function [W(x, y)] such that the displacement at any point
(x, ¥) within the element is given by

{u(x. )} = [P} {ec}. (61)

The strain at point (x, y) can thus be related to the displacements of nodal points by
the following expression

{eCe. )} = [Bl{w} (62)

where [B] = [2]['¥].
For an element with volume Q, and surface I';, the potential energy for the element is

n=i| @ ora- [ wie 6

where {r} is the traction on the surface ', of the element.

Applying the principle of virtual work which requires the variation of the potential
energy to be zero in order to preserve minimum potential energy on an element of the
granular medium,

S=0= I 5{e}"{o} dxdy— J’ S{u}T{t} ds
.‘ rI
= .[ 5{u}T[BI'[C)[B){u} dx dy— f S{ut}T[WIT{1} ds. (64)
2, Te

The above equation is satisfied for any variation 6{«°}. It leads to the following
equation:

[Kl{u'} = {F} (65)

where [K] is the stiffness matrix of the element, given by
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[K1= L[B]T[C 1{B) dx dy (66)

and the nodal forces { F*} due to applied traction {¢} are given by

{F}= fr[‘*‘lT{f} ds. (67)

After the element stiffness matrix is established, boundary value problems can be solved
using the usual finite element procedure.

5. EXAMPLES OF TWO-DIMENSIONAL GRANULAR MATERIAL PACKINGS

Granular solids under external load are analyzed using the finite element method
presented here to investigate the effects of constitutive coefficients. The granular material
is taken to be isotropic so that the constitutive matrix is of the form given in eqn (58).

The finite element mesh shown in Fig. 3 represents a pressure load on boundary surface
of granular material. Because a symmetrical condition is assumed, Fig. 3 reveals only half
of the picture on the right of the center line. The pressure is | 1b in~? (6.895 kPa) loaded
on a length of 2 in (5.08 cm) on the surface. At the base, the displacements are specified to
be zero in both directions. The displacements on the center-line and on the side-line are
specified to be zero in the horizontal direction. All boundary points are free to rotate except
for the points on the center-line. A plane strain condition is assumed.

Element stiffness matrix for each element is derived based on eqn (66) given in the
previous section and then assembled into a global stiffness matrix. With the specified
boundary condition, a set of simultanecous equations is formulated and solved for the
displacements and rotations for all nodal points. This computation procedure is carried out
for the example problem. Constitutive constants, E, v and z used for the packing is derived
from the properties of inter-particle contacts.

¢

Fig. 3. Finite clement mesh representing a pressure load on granular material.
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Table 1. Material properties used in the example

Inter-particle properties Macro-properties
Case ki—lbin™! ki—lbin™} ke E—~Ibin* v z—Ibin~*
1 10 10 t 1000 0 500
2 12.5 6.9 0.55 1000 0.1 345
3 19.2 0.62 0.03 1000 0.24 31

z=>5forallcases; I lbin~'=0I8kNm~':1lbin~* = 6.895 kPa.

We first examine the cases with A, = 0 (i.e. with no couple stress). Three combinations
of k, and &, are used in the example. Their value and the corresponding moduli £, - and
Poisson'’s ratio v are given in Table 1.

For the three cases, the computed deflections and stress 5% distribution deviate from
that obtained in elasticity. According to the stress—strain relationship [eqn (44)]. the present
model under symmetric stress condition forces the rigid body rotation to be equal to the
particle rotation (i.e. & = 0). This constraint, not imposed in the conventional elasticity
theory, causes the discrepancies in the computed deflections and stresses.

Comparison of the vertical stress along the center-line versus depth, plotted for case
2.is shown in the upper part of Fig. 4 where 28 is the width of pressure load. The vertical
stress versus horizontal distance at depth 28 is plotted in the lower part of Fig. 4. In the
present model, the stress transmits to deeper depth and diminishes quicker in the horizontal
direction. The scttlement at the center of the pressure load computed by the present model
are approximately 10% larger than that obtained from classical elasticity.

Next we examine the cascs with various values of A, to evaluate their effects on the
deformation behavior. We solve the example problem using the same properties given in
Table 1, while rotational stiffness of inter-particle contact g; and gi are varied to give
various values of modulus M, in cqn (58).

The settlement computed at the center of pressure load for the cases of M, = 0 and
M, # 0 arc denoted as d, and 3, respectively. Settlement ratio 4,,/d, is plotted in Fig. 5
against a normalized factor m defined as follows

Normalized Vertical Stress - ¢,/p
0.0 O.F 04 06 08 1.0
i 1 oL J

Horizontal Distance

b P 3°

o
o

o
N
i

o
>
L

o
@
1

Classic Elasticity Theory
------- Prasent Theory (M,=0)

Normalized Vertical Stress — o,/p
)
o
1

-
(-]
[l

Fig. 4. Comparison of vertical stress distribution computed by present theory and elasticity theory.
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Fig. 5. Effects of rotational modulus and inter-particle stiffness on settlement.

(68)

As shown in Fig. 5, it is expected that the higher stiffness {or rotational springs (i.c.
higher m) restrains the freedom of particle movement thus leading to a smaller settiement.
Since couple stress generates asymmetric shear and particle spin which in turn affects the
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Fig. 6. Computed ficlds of particle rotation.
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Fig. 7. Computed ficlds of particle displacement.

deformation of the material, the shear contact stiffness, k,, is thus an important influencing
factor. When k/k, = 1, the settlement significantly decreases as m increases. When k, = 0,
the spin modulus = = 0 and the rotational modulus M, has a smaller effect on the settlement.
Most of the effect takes place when m changes from 0 to 2. As m is greater than 2, the rate
of effect diminishes. The settlement continues to decrease slightly as m increases from 2 to
10.

For further discussion, we compare the example problem for the following three
cases: (1) m = 0, (2) moderate modulus m = 0.25 and (3) high modulus m = 8. Computed
rotations for nodal points are plotted in Fig. 6 for the three cases. For the case of m = 0,
particle rotations are restrained merely by the contact tangential stiffness, while for higher
rotation modulus particle rotations are subjected to additional constraint from rotational
springs.

Differences in the computed displacement fields for the three conditions are displayed
in Fig. 7. For m = 0, particles ncar the surface move towards the center-line and particles
at depth move away form the center-line. For large m, all particles have negligible horizontal
movements. Low rotational modulus allows more freedom of particle movements. For
example, the settlements at center-line under the pressure load are 0.0049 in and 0.0034 in
respectively for the m = 0 and 8 cases.

Although the vertical stress distribution shows agreement in patterns for three cases,
the magnitudes are somewhat different. This can be seen from the computed vertical stress
along depth plotted in Fig. 8. The rate of decrease is much faster for the high rotation
modulus material. The vertical stress along the horizontal direction at depth 8, as given in
Fig. 8, spreads into a wider area than that of the m = 0 case.
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Fig. 8. Vertical stress distribution computed for various rotational modulus.

The effect of aris also substantial on shear stress as shown in Fig. 9. For the case of
m = U, the stress o, = g, = 40 psi. However, when there is a rotational moduli, the value
of g, is not equal to o, duc to the presence of couple stress. For thecascofm = 8,0, = 97
pst while a,, = 5 psi. Due to the asymmetry of shear stress, particles spin. This effect will
produce plastic shear shiding in certain preferred orientations if the material is not elastic
in nature.

The computed distribution of couple stress g.. is plotted in Fig. 10. The magnitude of
couple stress increases with the modulus M, Note that large couple stresses are observed
in the region adjacent to the pressure toading. It is consistent with the presence of a rotation
gradient in this region as previously shown in Fig. 6.

Based on the results of this example, particle rotation and couple stress have con-
siderable effects on the over-all deformation behavior of the assembly.

6. SUMMARY AND CONCLUSION

The granular material perceived as a collection of particles is modelled as a macro-
continuum taking account of the structural micro-discreteness of the material and the
particle interaction. The constitutive constants are derived in closed-form for granular solid
with isotropic fabric distribution and lincar-elastic contact propertics. This expression is
useful in providing a clearer understanding of the physical meaning of the constitutive
constants in relation to stress-strain behavior.
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According to the derivation. six constants are identified : three constants /. G, = relating
stretch. stress and strain. and three constants 4., G,. =, relating couple stress and polar
strain. Of the six constants. four are independent corresponding to the four inter-particle
stitfness &,. k.. g, and g,.

Material constants 4 and G are the usual Lamé constants. The material constant -,
termed as spin modulus. relates particle spin and asymmetrical shear stress. The spin
modulus imposes constraints of particle rotations of the system which is not present in
classic elasticity. Therefore, even for the condition of symmetric shear stress (i.e. without
the presence of couple stress), the stress—strain behavior differs from that of the conventional
elasticity.

Parallel to the constants 4, G. =, the three material constants 4., G,. =, are needed when
couple stress is considered. These three constants govern the spatial variation of particle
rotation which s caused by the contact-couples transmitting in the granular media through
the rolling or twisting stiffness at contacts between particles.

A finite element analysis incorporating these constitutive constants is used to analyze
examples for granular material under boundary pressure. Under the condition of zero
rotational contact stiffness (i.e. M, = 0; that is without couple stress). the present model
computes settlement and stress distribution which are fairly different from that obtained
from elasticity. The difference is attributed to the effect of spin modulus. As a result, the
computed settlement is higher and the vertical stress transmits to deeper depth.

When rotational stiffness of inter-particle contact is considered, the granular media is
able to transmit couple stress. The effects of M, on the deformation behavior are substantial.
The computed scttlement decreases as M, increascs.

Since spin and rotational modulus for granular matenial depend on the propertics of
inter-particle contact, it is rational to account their effects in the anlysis of the over-all
deformation behavior of granular material.
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