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Abstract-The granuklr material perceived as a collection of particles is modelled as a micropolar
continua taking account of partide interaction and microstructure of the material. Explicit
expressions ofconstitutiveconstants in terms ofdastic inter-particle stiffness are derived for granular
solids with isotropic random fabric distribution. Based on the derived expressions for isotropic
material. six material constants are identitk-d instead of two constants used in conventional elasticity.
The derived constitutive constants in explicit terms of inter·particle contact properties provide a
fundamental understanding of these wnstants and fumish useful inler-rd'ltions among these con­
stants. The physical meaning of these material const'lllts is discusse'! with emphasis on the role of
particle spin. Finite element analysis incorporating these materi.l! constants is descrihcd and used
to ohtain solutions for boundary value prohlems. Examples are given 'llr granular solids under
houndary pressure to show the effects Ill' inter-particle properties and material constants on the
hchavior of stress distributilll1 and defllrmation in granular material.

l. INTRODUCTION

In earlier attempts. we have represented disl.:rete granular material as equivalent continua
hy treating particle translation and particle rotation as two wntinlllllll fields (Chang. 1989;
Chang and Liao. (l)l)O) and subsequently derived l:onstitlltive relations l:onsidering the
elrel:t of panicle inleradions and Illil:rostrlll:tllr:d properlies (Chang and Ma. 1991). The
derivation leads to a wnstitutive relationship which resembles mil:ropolar type (Toupin.
1964; Green. 1965; Eringen, I96X). The microllledlankal hased approach is novel in that
the derived wnstitutive constants arc explicitly in terms of inter-particle properties.

In this paper we aim to derive close-form expressions for the macroscopic constitutive
constant in terms of microstructural properties. Close·form expressions arc desirable
bel:ause they provide a better understanding of the intluenl.:e of inter-particle properties on
the stress-strain relationship. However, close·form expressions l:an only be obtained for
simplified I.:onditions since it involves complil:ated mathematical operations. Thus in this
paper we deal with a random pal:king of equal-sized spheres with isotropic fabric dis·
tribution and linear elastic contact interal:tion between particles.

Expressions of constitutive constants thus derived I.:onsist of six material constants for
isotropil: granular solids. Of the six constants. two arc identical to the Lame constants of
the c1astil:ity. The other four represent additional materialwnstants for granular material.
The physil.:al meaning of these constants will he evaluated to gain some insight into the
mechllnism of partide spin and to assess the influence of inter-pllrticle properties.

To show the c1rects of these material constants :lIld the inter-particle properties on the
deformation hehavior of granular solids in general houndary value problems. a finite
clement formulation is then descrihed whil:h incorporates the six constitutive constants.
Using the finite dement method. the hehavior of deformation and stress distribution is
discussed for granular solids under boundary pressure.

:.. :l.100ELLlNG OF GRt\NULAR MATERIAL AS EQUtVALENT CONTINUUM

2.1. J.ledul/Iics of illterac/iolls he/lre"11 par/icles
A simple conceptual model for granular material is to treat it as a collection of particles

which are connected at contact points hy imaginary springs (Dufry and Mindlin. 1957;

lfll)!
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Walton. 1987). The spring in general is elasto-plastic. The elastic portion of the spring
deformation is contributed by particle distortion while the plastic portion is contributed by
the sliding between particles. For simplicity. in this paper. we confine our discussion to the
elastic case only.

To represent the contact resistance. two types of springs are used. namely. the rotation
springs and the stretch springs. The rotation springs. transmitting contact moments. rep­
resent the rolling and torsional resistance at inter-particle contacts. The stretch springs.
transmitting contact forces. represent the compression and sliding resistance at inter-particle
contacts.

The interaction between the nth particle and its surrounding panicles is shown
schematically in Fig. l. When the assembly is subjected to an increment of load. particles
undergo translations III and rotations w,. resulting in the stretch of springs at contacts. For
example. at the cth contact of the nth particle as shown in Fig. 1. the angular rotation. o;n,
and the stretch. o,eN, of the spring are caused by the movement of the particle "c" relative
to the particle "n", given by

( I )

(2)

where rt and r~n are vectors joining the centroids of particles H n" and H C" respectively to
the contact point between the two particles as shown in Fig. I. The quantity
Silk = ~(i - j)U - k)(k i) is the permutation of symbols used in tensor representation for
the cross product of vectors.

Due to the stretch and rotation of the springs at a contact. corresponding moment.
dmr, and force, dt:, arc developed. given by

(3)

(4)

where g;; is the stiffness of the rotation springs ami k;; is the stiffness of the stretch springs.
If the stiffness tensors if;; and k;; arc deeoupled, they take the form,

c
u

Fig. I. Schematic figure for particle interaction.
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(5)

(6)

where g~ and k~. g~ and k~. and gr and kr are the stiffness constants in the directions of the
local coordinates n. sand t respectively. The local coordinate system is constructed for each
contact with three orthogonal base unit vectors: the vector is normal and the vectors sand
t are tangential to the contact area.

2.2. Strain and stress in a granular solid
In the macrocontinuum fields. in the neighborhood of the nth particle (i.e. the cluster

shown in Fig. I). we assume the usual "affine" (or homogeneous) deformation (Eringen.
1968). In Fig. \, the nth particle is associated with four kinematic variables: u7 and w7 as
the displacement and rotation. and u7J and w'!.i as the derivatives of the displacement and
the rotation. respectively.

For convenience. we introduce the asymmetric deformation strain eji and the polar
strain Y/~ in terms of variables related to particle displacement and rotation (Chang and
Liao. 1990)

(7)

(8)

With the alline deformation assumption. the angular rotation. Or. and the stretch. <57<.
of the springs at the contact between particle "n" and particle "c" [eqns (I) and (2)] can be
expressed by the strains defined for the particle [eqns (5) and (6)]. as follows:

(9)

(10)

where the branch vector It" = rF - rt.
Corresponding to the strain defined in eqns (7) and (8). the stresses in the granular

assembly can be defined using the principle of energy equivalence by equating the work
done due to the deformation of contact springs and the work done in terms of stress and
strain (Chang and Ma. 1991). Thus we obtain the Cauchy stress tensor uij in terms of
contact forces as

I
un = -- " r<fn<

'1 ? n L.., I J
_V ntO

and the couple stress tcnsor Jlij in terms of contact forccs and moments as

( II)

(12)

where vn is the volume of the microcell which includes the solid volume of the nth particle
and its associated voids.

Next, we envision a representative volume of granular material which is sufficiently
small when compared with the scale of the boundary value problem. yet consisting of a
sufficiently largc number of particles to be statistically representative of the behavior of the
material.

The stress for such a representative volume can be defined based on the volume average
of stresses at particle level as

SAS 29:8-F
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(13)

where the volume of the assembly

N

V= LV"'
"-I

In the double summation of eqn (12). each contact is counted twice. Note that the
vector I~' = 17e = -Ir" and fl = fll< = - flo. The stress can be further expressed by the
summation over all particle contacts in the representative volume. Thus

1 M

U,j = V L: IrJJ
c

(14)

M

where M is the total number of contacts and L: denotes a summation over all contacts.

Similarly. let the vector '7c = rr"+r7(' and note that (; = '7c = Cr" and mr = m7c = -m;",
the average couple stress

It is noted that, for packings with equal size spheres, ,; is zero and the couple stress in eqn
(15) is contributed solely through the moments at contacts.

2.3. Constitutil'e law ofgranular medium
Let Ck/ and Yk/ be the strains defined for the representative volume. Observed from the

results of computer simulation. the assumption of uniform strain seems reasonable for
packings of equal sized particles with the linear elastic contact property (Chang and Misra,
1990). With the assumption of uniform strain in the representative volume, the stress-strain
relationship for the representative volume can be derived based on eqns (14). (15), (3). (4),
(9) and (10) as

( 16)

where a'lkl' h'lkl and eljkl are the constitutive coefficients for the representative volume, given
by

I M

a1jkl = V L: ft Ke,'I;
C

1 M

bljkl = V L:::"m"l; KC"'I;r';"
C

where M is the total number of contacts in the representative volume.

( 17)

( 18)

(19)
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3. COl'STITUTIVE CONSTANTS FOR ISOTROPIC RANDOM PACKll'GS

(OOS

Since the representative volume consists of a large number of particles. the constitutive
constants [eqns (17)-( 19)] can be expressed in integral form by introducing a density
function. For packings of equal size spheres with isotropic directional distribution of inter­
particle contacts. the density function in a spherical coordinate (Fig. 2) is Ij4rr and it satisfies

i"i~" I-4 sin y dy dP = l.
o l) rr

(20)

Let M be the total number of contacts in the volume V. the number of contacts in the
interval from,' to y+dy and P to P+dP is given by M(lj4rr) sin}' dy dp. A summation of
any function F'"(y. P) over all contacts can thus be expressed in an integral form as follows:

tv I i" l~"L Fc(f'. P) = - F'"(y. p>M sin y dy dp.
c= I 4rr 0 0

(21)

For the packing of equal spheres of radius r. the branch vector If = 2rnf. where the
unit contact normal vector n:· is a function of y and p. Replacing the form of summation
in eqns (17)-( 19) by integral foml. we obtain

r~N i" i2

"a,lkl = V A:;k1(Y. (J)M sin y dy d{J
rr II II

rlN i" i2

"h'lk! = V n:;k1(Y. fl)M sin y dy d{J
rr II II

where

C:;k/(y./J) = n:(y.//)Gi/n~(y,/J).

By observing eqns (25) and (27), we can identify the following properties:

Fig. 2. Spherical coordinate for directional distribution of inter-particle contact.

(22)

(23)

(24)

(25)

(26)

(27)
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(28)

It is also noted that, for assembly with centro-symmetric packing, b'flc/ = btuj = O. Since
granular material is statistically centro-symmetric, the stress-strain relationship given in
eqn (\6) decouples and yields to the following form:

(29)

(30)

3.1. Stretch stress-strain relationship
Close-form expressions of the stiffness constants aijkl for a random assembly of equal

spheres with isotropic packing structure are obtained from eqn (22) assuming kJ =k,. After
mathematical operation, the constitutive constants can be expressed in the following form :

aiikl = A-<5ij<>kl+(G+Z)<>ik()jl+(G-z)<)i/<5ik . (31 )

Or expressed in a matrix form as follows:

i.+2G i. A- 0 0 0 0 0 0 r
(1.\,\- I:","

(fn' ;, )'+2G ). 0 0 0 0 0 0 l:\'r

(1:: i. ). )'+2G 0 0 0 0 0 0 1::::

Gn' 0 0 0 G+= G-= 0 0 0 0 l:.(lO

a.fr 0 0 0 G-= G+= 0 0 0 0 tv<

(1,\': 0 0 0 0 0 G+= G-= 0 0 e,\':
(32)

a". 0 0 0 0 0 G-= G+= 0 0 I;",

ax: 0 0 0 0 0 0 0 G+= G-= e"
(1:, 0 0 0 0 0 0 0 G-= G+= I;: :.J

Equation (32) represents a material symmetry of isotropy where the three macro-material
constants for a representative volume are expressed by micro-material constants kn and k,
as follows:

G = 2cx(2kn + 3k,) (33)

). = 4cx(kn -k,) (34)

== IOa:k, (35)

where

Mr 2
(36)

r:J. = 30V'
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The value of ~ relates to both particle size and the number of contacts ~er volume M/ V
which is a function of void ratio, coordination number and particle size (Chang et ai.,
1989). It is interesting to note that when kn < k" A. becomes negative, leading to the behavior
of a material with negative Poisson ratio. The material constant z in eqn (36) is not an
independent constant. Observed from eqns (33)-(35), the constant

z = G-).. (37)

The strain and stress in general are asymmetric. The strain defined previously in eqn
(7) is divided into two components: the symmetric part and the skew-symmetric part. The
symmetric part.

(38)

represents the stretch strain.
The skew-symmetric part of the strain

(39)

contains two terms: the skew-symmetric tensor '3 iikwk representing the average rotation of
particles in the representative volume and the skew-symmetric tensor !<uj•j - uiJ) representing
rigid body rotation of the representative volume. The angular rotation I/Ik corresponding
to the rigid body rotation is

(40)

Substituting this equation into eqn (39), the skew-symmetric tensor

(41)

represents the value of the net average particle spin (Le. the difference between particle
rotation and the rigid body rotation of the assembly).

Similarly. we define the symmetric stress

(42)

to represent the stretch and define the skew-symmetric stress

(43)

to represent the momentum due to shear in the material.
Note that £liil = -f1/i) and £(jil = £)1)' eqn (32) can be rearranged and expressed in a

matrix form as follows:
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o
o
o
o
o
o

o
o
o
o
o
o

t.+2G

o
o
o
o
o
o

o
o
o
G

o
o
o
o
o

o
o
o
o
G

o
o
o
o

o 0 0 0l CfT 1
o 0 0 0 I ':n

o 0 0 0 c==

o 0 0 0 CltVI

o 0 0 0 C'.I=' I
GOO 0 I;~.'..' I'
o :: 0 0 CluJ I
o 0 - ~ /:LV=JJ
o 0 0 Cr=xl

(44)

When the skew parts of stress and strain are neglected, the relationship between stress and
strain [eqn (44)] reduces to a form identical to that in conventional theory of elasticity. The
values of t. and G are thus the usual Lame constants. Corresponding to the Lame constants.
the values of macro-material constants Young's modulus £ and Poisson's ratio \' can be
obtained in terms of the micro-material constants k. and k" given by

20:xk.(2k. +3k,)
£ = .. - .-.._----_..-.-

4k. +k,

k.-k,
\'-

- 4k.+k,·

(45)

(46)

For a possible range of k, from 0 to infinity, the admissible range of Poisson's ratio is
thus - 1-0.25.

On the other hand, using eqns (44) and (45), the micro-material constants kn and k,
can be expressed in terms of the macro-material constants E and I' as follows:

£k =.-- - --- ...
n 20:x(1-21')

k £_'(_1-4~L _
, - 20:x(1 +1')(1-21')

(47)

(4g)

These relationships arc useful for back calculating the micro-material constants from the
laboratory measurements of macro-behavior of material samples.

The skew part of strain in the present formulation is introduced by a mechanism of
particle spin which is not considered in the conventional theory of elasticity. Non-sym­
metrical shear stress for the representative volume results from the spin of particles which
activates shear forces transmitting through particle contacts. Therefore, :: in eqn (44).
termed as a "spin modulus", is directly related to tangential contact stiffness k, as shown
in eqn (35). The spin modulus can also be expressed in terms of Young's modulus and
Poisson's ratio, given by

(1-41')£
Z=-_·_--.

2(1 + 1')(1- 21')
(49)

Equation (49) shows that v must be less than 0.25 in order to keep:: positive for
isotropic packing. This is in agreement with the admissible range of \' previously described
in eqn (46). Thus the phenomenon of v > 0.25 is attributed to the anisotropy of samples.

When the couple stress is absent. (Iij is symmetric (i.e. (IUiI = 0) which leads to the skew
part of strain EWI = 0 according to eqn (44). Thus no spin is expected for isotropic granular
material under symmetric stress conditions.
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3.2. Couple stress-strain relationship
Next we discuss the constitutive constants Cjjk.l in eqn (30) between couple stress and

rotation gradient. Similar to the derivation of aijlth this matrix also has the form of isotropic
symmetry. given by

~'l
A.,+2G, A., A., 0 0 0 0 0 0

It..-, J., A.,+2G, A., 0 0 0 0 0 0

It·· i., A., A.,+2G, 0 0 0 0 0 0

It,.· I 0 0 0 G,+:, O1'- z, 0 0 0 0

It,x 0 0 0 G,-z, G,+z, 0 0 0 0

It,-: = 0 0 0 0 0 G,+z, G,.-z, 0 0

It:,· 0 0 0 0 0 G,+z, G,-z, 0 0

It,: 0 0 0 0 0 0 0 G,+z, G,.-z,.

It:., 0 0 0 0 0 0 0 G,+z, G,-z,.

Yn
'I'.v.,

'1'::

'I',y

'1',.,
x '1',: (50)

'1':.•-

)'..:
Y•.(

where

G, = 2«(19"+3g,)

A., = 4a(g,,-g,)

Z, = lOag,

(51)

(52)

(53)

where 2 =Mr 2/30V.
According to eqn (50), when the rolling stiffness g, and twisting stiffness 9" at inter­

particle contacts are zero, no couple stress is permitted to transmit. Although values of 9,
and gn are negligible for a contact between two smooth spheres, the values can be con­
siderably larger for spheres bonded at contacts by an agent such as cement. Therefore eqn
(50) is more pertinent to bonded granular material.

Since the matrix form of eljlel in eqn (50) resembles the form of Qljk.l relating Cauchy
stress and stretch strain, in analogy to the Young's modulus E and Poisson's ratio v, two
material constants ER and VR can be similarly introduced for the relationships of couple
stress and rotation gradient. Under the applied stress p,x;t while Pyy =P:. = 0, the constants
ER and VR are defined as follows:

E _ Itx;t •R--,
'I'u

(54)

(55)
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ER represents the twisting resistance of a representative volume. VR is the ratio of rotation
gradients in the directions of two Cartesian axes.

Parallel to eqns (45) and (46). it yields the following representations:

(56)

(57)

It is noted that. if the twisting stiffness constant go of the contact is zero. no couple
stress can be transmitted through the motion of twisting between two spheres and it can be
seen from eqn (56) that the torsional resistance of the representative volume ER = O.

The contact shear forces due to a rotation gradient y" for particles rotating in the
direction of the x-axis can transmit through rotational springs and cause twist motion of
particles along the y and :-axes. This etfect is reflected by the variable I'R' For 9" = O. the
value of V R = -I.

It is certain that due to rotation gradients of particles in the representative volume. the
ability to transmit couple stress lies in the inter-particle properties 9". qt.

3.3. Two-dimcnsional emuliI ion
Reducing to a two-dimensional condition. the system contains the following COlll­

ponents of displacement and rotation:

II = (II, .11.,. 0) and (f) = (0. O. /0:).

For a plane strain condition, the following strains can be presullled to have vanished:

,':: = (,,- = }'l'}' = 0 and "\"I' = ~':, = f'n = }I:~. = O.

On the other hand. for a plane stress condition. the following stresses vanish:

II:: = II" = lin = 0 and II", = P" = P.l' = P:y = O.

For example, the stress-strain relationship of the material for the plane strain condition
is reduced to the following form:

G.t.r. ;.+2G ;. 0 0 0 0 £.t.r.

CTyy I. ;.+2G 0 0 0 0 c;......

(lxy 0 0 G+: G-: 0 0 f;,(y

(IF 0 0 G-: G+: 0 0 En (58)

11,: 0 0 0 0 AI, 0 .,
I·f:

Jl...: 0 0 0 0 0 M, fl':

where M, = G,+:, = 4cc(g,,+4q,).

... FINITE ELEMENT FOR~IULATION

For two-dimensional plane strain conditions. the strain-displacement relation can be
expressed in matrix form as follows:



where

and
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{e} = [ol{u}

ex 0 0

0 Oy 0

0 iJ.. -1

(}v 0 1
[e) = 0 0

0 0 x

y

1011

(59)

(60)

In an element which consists of several nodal points. the displacements of nodal points
can be expressed by a nodal displacement vector {Uo}. The displacement field of the element
can be constructed using a shape function ['fI(x.y)] such that the displacement at any point
(x.y) within the element is given by

{1I(:C.y)} = ['fI(x.Y)]{1I0}. (61 )

The strain at point (:c,y) can thus be related to the displacements of nodal points by
the following expression:

{c(x.y)} = [H]{II°} (62)

where [H] = [2]['f'].
For an clement with volume n. and surface r o , the potential energy for the clement is

(63)

where {t} is the traction on the surface r o of the element.
Applying the principle of virtual work which requires the variation of the potential

energy to be zero in order to preserve minimum potential energy on an element of the
granular medium,

In = 0 = r 15{e}T{q} dxdy- r 15{uy{t} ds
!~ J~

= r b{ lie Y[H]T[C][B]{ ue
} dx dy - r 15{ 11° }T['fI]T{t} ds. (64)

!~ J~

The above equation is satisfied for any variation o{Uc
}. It leads to the following

equation:

[K]{ue
} = {P}

where [K) is the stiffness matrix of the element. given by

(65)
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[K] =1[B]T[C][B] dx dy (66)

and the nodal forces {F'} due to applied traction {t} are given by

{F'} = f ['I']T {t} ds.Jr, (67)

After the element stiffness matrix is established. boundary value problems can be solved
using the usual finite element procedure.

5. EXAMPLES OF TWO-DIMENSIONAL GRANULAR MATERIAL PACKINGS

Granular solids under external load are analyzed using the finite element method
presented here to investigate the effects of constitutive coefficients. The granular material
is taken to be isotropic so that the constitutive matrix is of the form given in eqn (58).

The finite element mesh shown in Fig. 3 represents a pressure load on boundary surface
of granular material. Because a symmetrical condition is assumed, Fig. 3 reveals only half
of the picture on the right of the center line. The pressure is I Ib in - 2 (6.895 kPa) loaded
on a length of 2 in (5.08 em) on the surface. At the base, the displacements are specified to
be zero in both directions. The displacements on the center-line and on the side-line are
specified to be zero in the horizontal direction. All boundary points are free to rotate except
for the points on the center-line. A plane strain condition is assumed.

Element stiffness matrix for each element is derived based on eqn (66) given in the
previous section and then assembled into a global stiffness matrix. With the specified
boundary condition. a set of simultaneous equations is formulated and solved for the
displacements and rotations for all nodal points. This computation procedure is carried out
for the example problem. Constitutive constants, E, v and z used for the packing is derived
from the properties of inter-particle contacts.

Fig. 3. Finite element mesh representing a pressure load on granular material.
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Table I. Material properties used in the example

Inter-particle properties Macro-properties

1013

Case

1
2
3

k~-lb in-I

10
12.5
19.2

k;'-Ib in-I

10
6.9
0.62

I
0.55
0.03

E-lbin"'

1000
1000
1000

o
0.1
0.24

:-lb in·'

500
345

31

:x = 5 for all cases; I lb in· I = 0.18 kN m· I ; I Ib in -, = 6.81J5 kPa.

We first examine the cases with M r = 0 (i.e. with no couple stress). Three combinations
of k. and k, are used in the example. Their value and the corresponding moduli E. =and
Poisson's ratio v are given in Table l.

For the three cases. the computed deflections and stress 5% distribution deviate from
that obtained in elasticity. According to the stress-strain relationship [eqn (44)]. the present
model under symmetric stress condition forces the rigid body rotation to be equal to the
particle rotation (i.e. 8W) = 0). This constraint. not imposed in the conventional elasticity
theory. causes the discrepancies in the computed deflections and stresses.

Comparison of the vertical stress along the center-line versus depth. plotted for case
2. is shown in the upper part of Fig. 4 where 28 is the width of pressure load. The vertical
stress versus horizontal distance at depth 28 is plotted in the lower part of Fig. 4. In the
present model. the stress transmits to deeper depth and diminishes quicker in the horizontal
direction. The settlement at the center of the pressure load computed by the present model
are approximately 10% larger than that obtained from classical elasticity.

Next we examine the cases with various values of Atr to evaluate their el1'ccts on the
deformation behavior. We solve the example problem using the same properties given in
Table I. while rotational stiffness of inter-particle contact 9~ and 9;' arc varied to give
various values of modulus M r in eqn (58).

The settlement computed at the center of pressure load for the cases of /lo/r = 0 and
,\lr -# 0 arc denoted as 15 11 and 15m respectively. Settlement ratio e)".!e)1l is plotted in Fig. 5
against a normalized factor m defined as follows:

Nonnallzed Vertical Stre.. - ~,/p

~o ~ ~4 ~s ~8 1~

18

J

48

./ .

/
:

Horizontal Distance
18 8

-- Classic Elasticity Theory
.•••••• Present Theory (t.t,-O)

Q, 0.0 +-__-!. "-__...I

~
I 0.2
:;
~
III 0.4

J0.5

1:
'i 0.8

~
z 1.0

Fig. -I. Comparison of vertical stress distribution computed by present theory and elasticity theory.



IOI~ CHI:"G S. CHA:"G and LL:" \IA

t,.c.. = 0.03

0.55

-----------
1

o •
m

• • 10

Fig. 5. Effects of rotational modulus and inter-particle stiffness on settlement.

I Atrm= .~..
28 G

(68)

As shown in Fig. 5. it is expcctcd that thc higher stiffncss for rotational springs (i.e.
higher m) restrains thc freedom of particlc movemcnt thus leading to a smallcr scttlemcnt.
Since couple stress gcncratcs asymmctric shcar and particlc spin which in turn affects thc

I I
--~~~~~~~ ~ ~

--~~~~~~~~~~~ ~ ~

_ _ _ _ .- J ..

m _ 0

m - 0.25

m - 8

Scale: ~ _ 0.0019 rad

Fig. 6. Computed fields of particle rotation.
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I
],L/III I I I!tIl' I

HH f
,

HH f •
BU. f •

~ ~ ~ ~ \ • •
m • 0

I I

Irll ~ I

HH I f

HH f f

~HU f f

HUH f •
• • ~ ~ • • f

m • 0.25
I I

ItttH

"
• f f

UH • f •
~UH • • •

UUUH • •
U.UHHUH • f

• • • • • • f

m • 8

Scale : ~ - 0.0049 in

Fig. 7. Computed fields of particle displacement.

deformation of the material. the shear contact stiffness, k,. is thus an important influencing
factor. When k,/kn = I, the settlement significantly decreases as m increases. When k, =0,
the spin modulus z =0 and the rotational modulus M, has a smaller effect on the settlement.
Most of the effect takes place when m changes from 0 to 2. As m is greater than 2, the rate
of effect diminishes. The settlement continues to decrease slightly as m increases from 2 to
10.

For further discussion. we compare the example problem for the following three
cases: (I) m = O. (2) moderate modulus m = 0.25 and (3) high modulus m = 8. Computed
rotations for nodal points are plotted in Fig. 6 for the three cases. For the case of m = 0,
particle rotations are restrained merely by the contact tangential stiffness. while for higher
rotation modulus particle rotations are subjected to additional constraint from rotational
springs.

Differences in the computed displacement fields for the three conditions are displayed
in Fig. 7. For m =0, particles near the surface move towards the center-line and particles
at depth move away form the center-line. For large m, all particles have negligible horizontal
movements. Low rotational modulus allows more freedom of particle movements. For
example, the settlements at center-line under the pressure load are 0.0049 in and 0.0034 in
respectively for the m = 0 and 8 cases.

Although the vertical stress distribution shows agreement in patterns for three cases,
the magnitudes are somewhat different. This can be seen from the computed vertical stress
along depth plotted in Fig. 8. The rate of decrease is much faster for the high rotation
modulus material. The vertical stress along the horizontal direction at depth B. as given in
Fig. 8, spreads into a wider area than that of the m = 0 case.
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The dli:ct of III is also substantial on shear stress as shown in Fig. 9. For the C~lse of
JII = 0, the stress 11". = 11" = 40 psi. However, when there is a rotational moduli, the value
of IT '" is not equ.t! to lIn due to the presence ofcouple stress. For the case of 111 = 8,11,,. = 97
psi while IT" = 5 psi. Due to the asymmetry of shear stress, particles spin. This clrect will
produce plastic shear sliding in cert'lin prcli:rrcd orientations if the material is not elastic
in nature.

The computed distribution of couple stress It,: is plotted in Fig. 10. The magnitude of
couple stress increases with the modulus Mr. Note that large couple stresses arc observed
in the region adjacent to the pressure loading. It is consistent with the presence of a rotation
gradient in this region as previously shown in Fig. 6.

Based on the results of this ex'lmple, particle rotation and couple stress have con­
siderable clrects on the over-all ddormation behavior of the assembly.

6. SUMMARY AND CONCLUSION

The granul<tr material perceived as a collection of p<trticles is modelled as a macro­
continuum t<lking account of the structural micro-discreteness of the material and the
panicle interaction. The constitutive constants are derived in closed-form for granular solid
with isotropic f'lbric distribution .lOd linear-elastic contact properties. This expression is
useful in providing a clearer understanding of the physical meaning of the constitutive
constants in relation to stress·strain behavior.
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According to the derivation. six constants are identified: three constants i.. G.: relating
stretch. stress and strain. and three constants ir. Gr. :, relating couple stress and polar
strain. Of the six constants. four are independent corresponding to the four inter-particle
stiffness k n. k r • 9n and gr'

~laterial constants i. and G are the usual Lame constants. The material constant :.
termed as spin modulus. relates particle spin and asymmetrical shear stress. The spin
modulus imposes constraints of particle rotations of the system which is not present in
classic elasticity. Therefore. even for the condition of symmetric shear stress (i.e. without
the presence ofcouple stress). the stress-strain behavior differs from that of the conventional
elasticity.

Parallel to the constants i.. G. :. the three material constants i. r • G" :r are needed when
couple stress is considered. These three constants govern the spatial variation of particle
rotation which is caused by the contact-couples transmitting in the granular media through
the rolling or twisting stiffness at contacts between particles.

A fInite element analysis incorporating these constitutive constants is used to analyze
examples for granular material under boundary pressure. Under the condition of zero
rotational contact stiffness (i.e. M, = 0; that is without couple stress). the present model
computes settlement and stress distribution which are fairly different from that obtained
from elasticity. The difference is attributed to the effect of spin modulus. As a result. the
computed settlement is higher and the vertical stress transmits to deeper depth.

When rotational stifTness of inter-particle contact is considered. the granular media is
able to transmit couple stress. The efTects of M r on the deformation behavior an: substantial.
The computed settlement decreases as ~fr increases.

Since spin and rotational modulus for granular material depend on the properties of
inter-particle contact. it is rational to account their clfects in the anlysis of the over-all
dcrormatioll hehavior of granular material.

.·Id //Olr/"dr/"'''''//IS The paper is oased on research projects supported oy the Airforce Ollice of Scienti lie Research
and oy the National Science I-'oundation.
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